An overview of direct detection of dark matter

Pushparaj Adhikari

Carleton University

Meeting of Minds Ottawa Research Conference

AUGUST 12-13, 2023

Outline

Introduction and evidence of dark matter

Detection techniques

Direct detection

≻Current sensitivities

► Future detectors

➤ Conclusion

The universe

- Visible matter (5%): Anything we can see, emits electromagnetic (EM) radiation.
- Dark matter (27%): No EM interaction, may interact with weak gravitational force.
- Dark energy (68%): Repulsive force, against the gravity, causes the universe to expand at an accelerating rate.

Cosmic microwave background (CMB)

- Discovered in 1964 by Arno Penzias and Robert Wils
- Electromagnetic radiation
- > Residue from an early stage of the universe

FIGURE 1.1: The detailed full-sky picture of the infant Universe created from nine years of WMAP data [20]. This shows that 13.7 billion year old temperature fluctuations within ± 0.2 mK and different color refers the density inhomogeneities.

The discovery of CMB guide us to accept the Big Bang theory and production of dark matter.

Galaxy rotation curve

$$v(r) = \sqrt{\frac{GM(r)}{r}},$$

- Rotation curve should decrease inverse square root with distance
- Observational curves of visible parts of the galaxy do not decreases
- Large gap between observation and expected curve leads towards the gravitational effect of dark matter

Gravitational lensing

- ➤ Gravity effect of dark matter
- Massive celestial body (eg. galaxy cluster) causes a sufficient curvature of spacetime for the path of light around it to be visibly bent, as if by a lens.

- On the top is a Hubble Space Telescope image of the galaxy cluster Cl 0024+17. On the bottom is the same image overlaid with a map of the cluster's mass distribution.
- The ring-like structure evident in the map is one of the strongest pieces of evidence to date for the existence of dark matter.

Dark matter candidates

> Neutral

- > Stable particles
- Massive enough for structure formation Candidates are in different orders of magnitude of mass.
 - It is everywhere, do you feel it? Density of human being ~ 1000 kg/m3 Density of dark matter ~10^-21 kg/m3 If you add all dark matter inside all human being on earth, it is less than single nanogram.

FIGURE 1.11: Estimated loci of select dark-matter models in the space of candidate mass in GeV versus dark-matter-candidate-nucleon interaction cross section in pb [88].

Dark matter modulation

- The relative velocity between DM particles in galactic halo and detectors varies over the year.
- Approximately sinusoidal modulation for the recoil rate of DM at keV energies.
- ➤ Peaks at early June.

FIGURE 1.18: An Illustration of Earth's relative velocity to WIMPs current which arise annual modulation in dark matter signal [83]

Direct detection experiments

Dark matter interact with the detector material, energy transform

FIGURE 1.19: Different dark matter direct detection experiments classified by their detection technique

Discovery

- Record particle interaction signal from the detector
- Identify the background and dark matter signal (simulate all possibl background sources)
- Plot the extracted signal vs time (annual modulation)
- Calculate the mass, cross section of DM from the extracted signal
- > No signal detector sensitivity

10²

10-1

10-2

10

- > Background noises: Deep underground / outer space (not on the surface of the earth)
- > Large cross section: Multi hundred tons of detector materials
- > Technologies: DAQ, ns timing resolution, analysis toolkits, simulation, material purity
- > Resources: Multi billion dollar financing, international collaboration

COSINE-100 collaboration

Joint collaboration between KIMS and DM-Ice to search for dark matter interactions in NaI(TI) scintillating crystals.

COSINE station

COSINE detector

- >> 8 NaI(TI) crystals (100 kg) fully immersed in LAB based liquid scintillator.
- > Liquid scintillator works as external gamma and neutron veto.
- > Covered the detector with plastic scintillator panels (muon veto).

DEAP collaboration

~100 researcher in Canada, Germany, Italy, Mexico, Poland, Russia, Spain, UK, USA

16

DEAP site

- The detector is located at SNOLAB in Sudbury Ontario, world's deepest clean lab.
- A deep underground laboratory which uses the 2.2 km of rock overburden (provides a ~6 k.m.w.e overburden)

Detector

- DEAP-3600 is the largest running liquid argon detector designed for the dark matter search
- 3279 ± 96 kg of Liquid Argon

- Density: 1.4 g/cm³
- Scintillation light yield in DEAP: 7.1 photoelectrons (PE)/keVee

Results of DEAP

- World's leading cross section limit on Argon detector.
- Analysis is ongoing for 3 years data-set.
- Some parts of the hardware is upgrading and detector will be run for 2 more years after the upgrade.

Future detectors

Many large scaled detectors are on the pipeline for next generation.

Argo

300 tons of liquid argon.

Purposed location (under discussion): SNOLAB, Sudbury, Canada

Data starts: ~ 2040

Conclusion

- > Dark matter is still hiding with us despite of 50 years of effort
- > Worldwide collaboration is ongoing for the dark matter detection
- > Large scaled, advanced tech future generation's detector are on the horizon
- > Stay tuned: dark matter will no longer dark, it will be visible soon

Thank you

BACKUP

Direct astronomical observation

- When two galaxy cluster collide, stars were not affected
- Hot plasma clustered in the center drove into one another and emitted x-ray
- The mass of the cluster distributed on either side

Explanation of dark matter: dark matter and galaxies passed through each other and the hot plasma clustered was block by electromagnetic interactions and interweaves in the center

FIGURE 1.7: Galaxy cluster 1E 0657-556, also known as the Bullet cluster. Hot plasma detected as X-ray regions from Chandra is seen as two pink lumps. An optical image from Magellan shows the galaxies and mass regions inferred from Hubble (blue).

Search methods

DM particles can interact with standard model (SM) particles, annihilate or decay to SM particles, and can be produced in accelerator.

DM-SM Interaction (Direct detection)

