

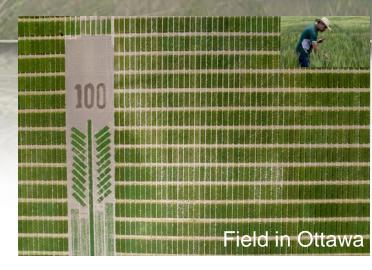
Raja Khanal, PhD

Ottawa Research and Development Centre

100 years of Barley Breeding

Barley Breeding Team

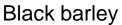
- Six full-time staffs
 - 1 Barley Breeder
 - 2 Breeding technicians -Charlottetown, PE
 - 2 Breeding technicians –Ottawa, ON
 - 1 assistant breeding technician –Ottawa, ON
- 2 summer students
- 1 casual help
- 1 graduate student



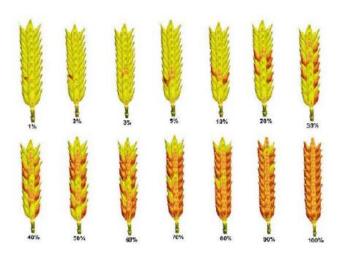
Breeding Facilities

- Two Breeding locations Charlottetown PE and Ottawa ON
- >20 acres of field plots in Central experimental farm
- >5 acres of off-station field plots in Vernon, ON
- > 15 acres of field plots in Harrington, PE
- 1 FHB artificial nursery
- Machinery for planting, combine and seed cleaning
- Advanced material testing and evaluations
 - >6 locations every year

Barley breeding focus


Two and Six-row Barley

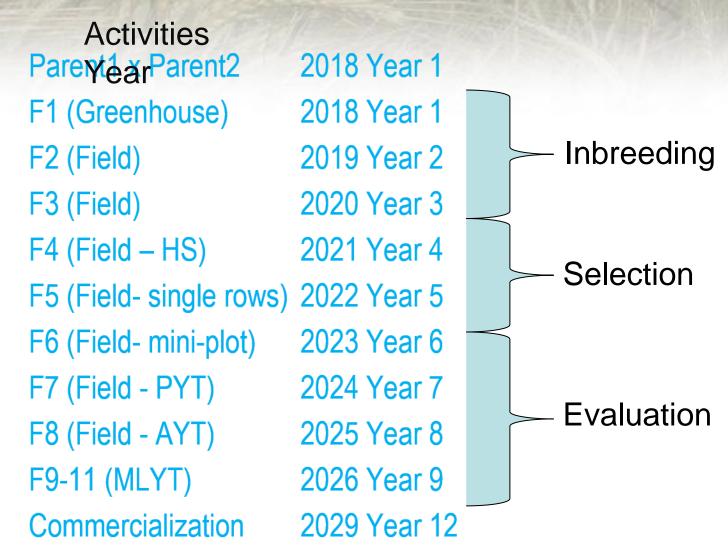
- Feed (80%)
- Malting (18%)
- Hulless feed and food (2%)

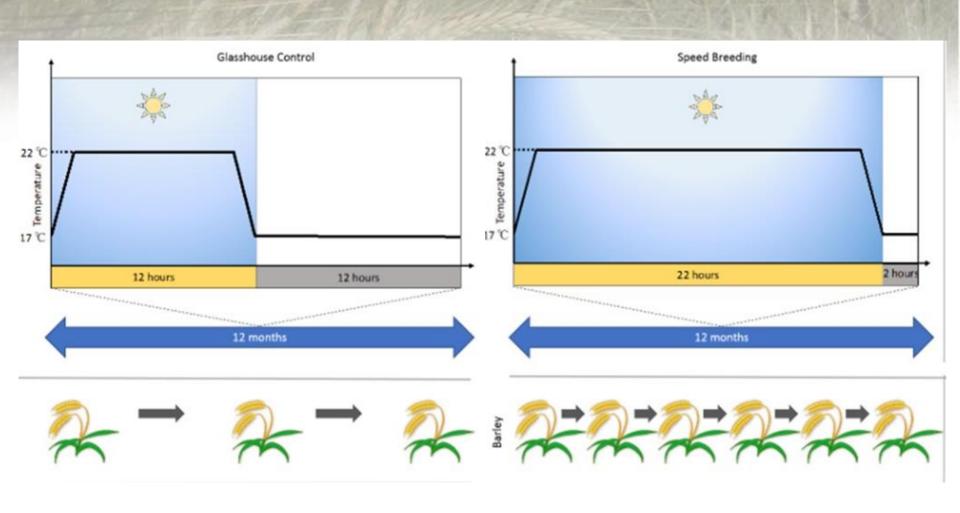


Traits (Production and Quality traits)

- High yield
- Fusarium head blight resistance
- Improved lodging resistance
- Grain plumpness

- Protein
- Malt extract
- Wort viscosity




Variety Development

Conventional breeding approach

Accelerate Variety Development

Accelerate Variety Development

Speed Breeding Approach

Activities

PareYear Parent2 2017 Year 1

F1 (Greenhouse) 2018 Year

£2 (Greenhouse) 2018 Year

🛱 3 (Greenhouse) 2018 Year

£4 (Greenhouse) 2019 Year

\$\beta_5\$ (Field-Single row) 2019 Year 2

F6 (Field-NZ) 2019 Year 2

F7 (un-replicated YT) 2020 Year 3

F8 (Prelim. YT) 2021 Year 4

F9 (Advanced YT) 2022 Year 5

F8-10 (MLYT) 2023-25 Year 6-8

Commercialization 2026 Year 9

New released varieties (2018 to date)

Two-row varieties

- 1. AAC Ling (2018)
- 2. AAC Bell (2018)
- 3. AAC Madawaska (2019)
- 4. AAC Sorel (2021)
- 5. CH1209-1 (2023)

Six-row varieties

- 1. OB2930-35 (2021)
- 2. OB2705n-11 (2021)

Current projects

Optimal seeding rates for hulless barley

R. Khanal, A. Mills, T.M. Choo, S. Fillmore, D. Pageau, N. Mountain

Demand for hulless barley

- Feed, food and malt uses
- Higher digestibility, higher protein and energy contents, and lower fibre than hulled barley
- Contains health-related compounds adding to its appeal in the health-food

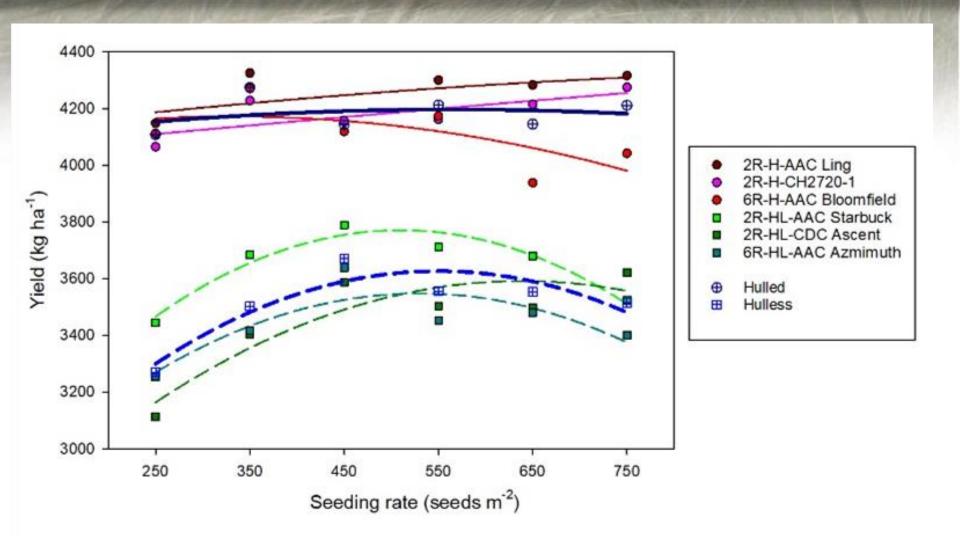
Hulless black barley

AAC Starbuck

CH2909-162-95

Hulless barley does not tolerate handling as hulled barley because of the exposure germ

Recommended seeding rate is 300 seeds per m² in eastern Canada


Hulled barley

Hulless barley

Justification of the study

- There are no recommended guidelines for hulless barley
- Agronomic practices that generate maximum yield potential are necessary to make it a successful crop

Seeding rate vs grain yield

Current projects

Pathogenicity of *Fusarium graminearum* and *F. poae* causing Fusarium head blight in barley under controlled conditions

R. Khanal, K. Hudson, A. Foster, X. Wang, L. J. Harris, E. Brauer, and D. P. Overy

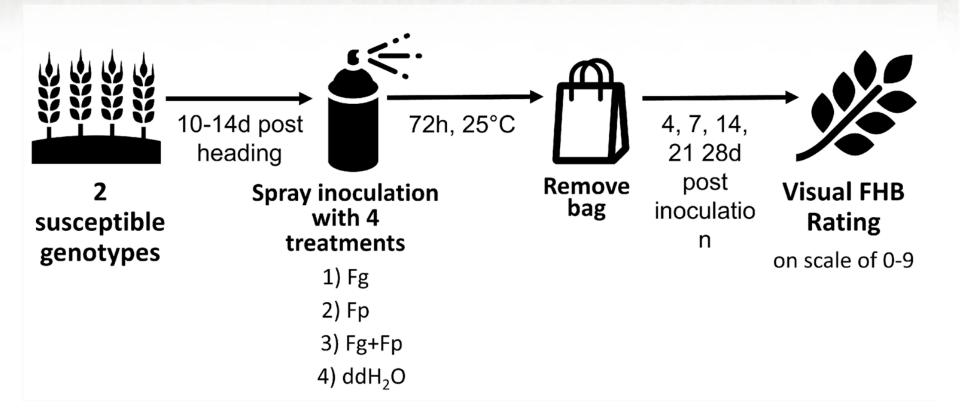
FUSARIUM SPP. IN EASTERN CANADA

Fusarium graminearum (Fg)

- Predominant cause of FHB epidemics in North America
- Toxin of concern = DON

Fusarium poae (Fp)

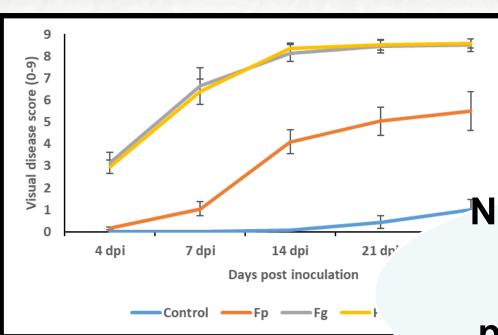
- 'Weak' pathogen
- Higher detection frequency
- Toxin of concern = T-2, HT-2


FUSARIUM SURVEY (Xue et al. 2018)

- Surveyed wheat, barley, and oats from 2001-2017
- FHB epidemic vs. non-epidemic years
 - F. graminearum (Fg) = most detected in **epidemic** years
 - F. poae (Fp) = most detected in **non-epidemic** years
- Wheat vs. oat vs. barley
 - Wheat Fg dominated
 - Oat Fp dominated
 - Barley Fg and Fp equally dominant

METHODS

Assess visual severity of FHB in barley between single-inoculation vs. co-inoculation of *F. graminearum* and *F. poae*



VISUAL DISEASE ASSESSMENT

RESULTS

Assess visual severity of FHB in barley between single-inoculation vs. co-inoculation of *F. graminearum* and *F. poae*

- There was a significant difference in FHB severity between Fusarium graminearum and F. poae
- FHB severity was similar between Fusarium graminearum

No increased severity in FHB when both pathogens were present compared to Fg infection alone.

Acknowledgements

Canadian Agricultural Partnership

Canadian Barley Research Coalition

- Atlantic grain Council
- Grain Producers of Quebec

Grain Farmers of Ontario

Targeted and Useful Genomics for barley and Oat

